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A Modified Finite-Element Method for
Dielectric Waveguides Using an
Asymptotically Correct Approximation on
Infinite Elements
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Abstract —A modified finite-element method for the propagation anal-
ysis of such dielectric waveguides as optical fibers and integrated optical
waveguides is presented. Possible applications include nondissipative
structures of arbitrary anisotropic media with, in some cases, inhomoge-
neous exterior regions. The method is based on the full vectorial finite-
element formulation [7], which is known to be without spurious solu-
tions. With this formulation all appropriate boundary and interelement
conditions on both tangential and normal components are a priori
satisfied. For the unbounded, exterior region a novel type of asymptoti-
cally correct approximation on infinite elements is proposed that simul-
taneously, for each mode and frequency, locally adapts the rate of radial
decay to the transversal wavenumbers. The linearity of the original
finite-element method has been retained by using B /k, as a parameter,
which results in a sparse generalized eigenvalue problem. Numerical
examples including both optical fibers and integrated optical wave-
guides, isotropic as well as anisotropic, have been analyzed to confirm
the validity of the method. The observed correspondence with analytical
solutions has been found to be excellent. For some examples a special
near-field wavenumber has been added to preserve a high accuracy close
to cutoff.

I. INTRODUCTION

HE finite-element method (FEM) has during the last

two decades become a well-established tool for propaga-
tion analysis of various waveguide components [1]-[8] for
which closed-form analytical solutions cannot be found. In
extending the FEM to handle open dielectric waveguide
structures, which are becoming increasingly important for
integrated optical devices and optical communication sys-
tems, a variety of approaches have been proposed.

With the artificial or virtual boundary technique both
interior and exterior regions are treated using standard finite
elements. The latter region is, however, truncated by, e.g.,
enclosing the entire waveguide structure within a perfect
electric conductor [9] or requiring the fields to vanish at a
certain distance from the origin [10]. A disadvantage is that
the location of the artificial boundary yielding the most
accurate solution is not known in advance. It can, however,
be determined iteratively for each mode and frequency [11].

Hybrid methods combine the standard FEM with methods
more compatible with open regions, such as function expan-
sion [12] or integral equation methods [13], [14]. The hybrid
methods are often restricted to waveguides with a homoge-
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neous exterior region, such as optical fibers, and result in
nonlinear systems of equations. The latter is due to the
necessity of knowing the transversal wavenumber in order to
evaluate the Hankel functions appearing in both the function
expansion and integral equation methods. As the transversal
wavenumber is unknown at the outset of the problem. the
linearity is lost.

Modified FEM’s combine the standard FEM with a spe-
cial treatment of the exterior region, e.g. using an expansion
on infinite elements. One example is [15], which utilizes a
parametric infinite element with a radial trial function y =
e, where 1/« is a global decay length. As the decay
length is initially unknown, an outer iteration loop has to be
run through for each mode and frequency to determine the
optimum value of «. As different coordinate systems are
used for the interior and exterior regions, interelement con-
ditions cannot be satisfied exactly along the interface be-
tween the standard and special elements. A similar ap-
proach, but formulated in terms of Cartesian coordinates,
that allows an exact fulfillment of the boundary conditions is
described in [16]. Iterative procedures are proposed in [17]
that allow a self-consistent determination of the optimum
decay length by using either the previous eigenvalue or
eigenvector. A different approach is proposed in [18], one
that removes the need to iterate for an optimum decay
parameter. Instead, a set of decay lengths is selected to allow
for adequate modelling of the asymptotic behavior of all
modes of interest. The choice of decay lengths has to be
made by the user. Only isotropic guides with homogeneous
core and cladding are treated in [18].

In this paper a modified FEM is proposed which for the
exterior region uses an asymptotically correct approximation
on symmetrical infinite elements, through which the local
rate of radial decay is adapted to the transversal wavenum-
bers simultaneously for all modes and frequencies. The need
to iterate for an optimum decay parameter is thus avoided.
The linearity of the original FEM has been retained by using
the normalized propagation constant, 8 /k,, as a parameter,
which results in a sparse generalized eigenvalue problem for
which very efficient solvers exist.

The method presented here is based on the full vectorial
(E - H) finite-element formulation [7]. [8], which is directly
derived from the first-order Maxwell curl equations and
which a priori enforces not only the necessary conditions on
the tangential components r X E and n X H, but also the
additional conditions on the normal components n-B and
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Fig. 1. The arbitrary, open dielectric waveguide structure.

n-D. With this formulation an absence of spurious modes
has earlier been found.

A number of numerical examples covering both optical
fibers and integrated optical waveguides, isotropic as well as
anisotropic, have been analyzed in order to evaluate the
validity of the presented method. For some examples a
special near-field wavenumber has been added in order to
preserve a high accuracy close to cutoff.

II. MATHEMATICAL DERIVATION
A. The Boundary-Value Problem

In this paper we consider open dielectric waveguide struc-
tures of the type depicted in Fig. 1, which consists of an
interior region, ();, containing the possibly inhomogeneous
core, an exterior region, (),, containing the possibly inhomo-

geneous cladding, an interface between the two regions, I',

and possible electric and magnetic walls, I', and T,,, respec-
tively. The structure is assumed nondissipative but may oth-
erwise consist of arbitrary linear media, each described by
relative permittivity and permeability ' self-adjoint matrices
[e] and [u], respectively.. Assuming a harmonic time depen-
dence of the form e/*, where w is the real angular fre-
quency, the governing source-free Maxwell equations are

VXE=—joB=—jop[n]H (1)

VX H=joD = jwe[e]E 2)
where E, H, D, B, ¢;, and u, are, respectively, the electric
field, the magnetic field, the electric displacement, the mag-
netic induction, the permittivity of vacuum, and the perme-
ability of vacuum. For the boundary-value problem to be
well-defined, it is necessary to enforce the boundary and
continuity conditions on the tangential field components
nX E and n X H.

B. The Weak Formulation

The presented method is based on the full vectorial [19]
weak formulation [7] of the boundary-value problem as
straightforwardly derived from the first-order curl equations
(1) and (2). Approximate weak solutions [20] E and H are
hereby forced to satisfy

_/:[ (Etest (JV X H + weg[€]E)

+ HE (—jV X E +opglp]H))dS=0 (3)

for admissible [20] test functions E, and H. The fields
E, H, E,, and H,, should satisfy the appropriate interele-
ment and boundary conditions. Here, we enforce interele-
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Fig. 2. A portion of a sample finite /infinite-element mesh employing
third-order interpolation.

ment continuity of the tangential components, i.e.,

nx(E,—E)=0 (4)
nx (H,~ H)=0 (5)

and of the normal components ie.,
n-(B,—B;)=n-uo([w,]H, —[p,;]H, ) 0 (6)
n(D,—D)=n-%ﬂeJE,—eJE)=0 (7)

where nr is the unit vector at the interface between two .
adjacent elements i and j. We also enforce the tangential
boundary conditions,

nXE =0
nXH =0

(8)
)

on T, and T,,, respectively, and the corresponding normal
conditions,

”'Bizﬂ‘,uvo[l*i]Hi=0
n-D,=n-¢yl¢]E;=0.

(10)
(11)

C. The Expansion in £},

For the finite interior region, {);, standard Nth-order
triangular finite elements [20], [21] are employed, as illus-
trated in Fig. 2, which shows a portion of a sample finite /
infinite-element mesh. The six components of the electric
and magnetic fields are then approximated over each ele-
ment in terms of the values at each of the finite-element
nodal points according to

E, = Zy{N}'{E }e /¥
E,=Zy(N}Y{E,}e
E, = jZo{N}'(E,}e /P
H,={N}'{H,}e %

H,={N}"{H,}e7*
H, = j{N}'{H,}e (12)

where B is the propagation constant, and Z, =(u / €)'/ is
the intrinsic impedance of vacuum. The real M X1 column

“vector {N} is the finite-element shape function vector, where

M = (N +1)(N +2)/2 is the number of nodal points on each
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Fig. 3. The mapping of an infinite element from the x—y to the n—¢

plane.

element, and T denotes a mairix transposition. The con-
struction of finite-element shape functions has been thor-
oughly described elsewhere [20], [21]. Here, the column
vectors {E,}, {E\}, {E}, {H,), {H,)}, and {H} are M X1
complex field vectors representing the nodal point values of,
respectively, £, /Z,, E, /Zy, — JE,/Zy, H,, H,, and — jH,
on each finite element.

D. The Expansion in ),

For the infinite exterior region, {},, a new type of expan-
sion on symmetrical infinite elements [18] (see Fig. 3) is used,
one that simultaneously for each mode and frequency adapts
the local rate of radial decay to the transversal wavenumbers
related to each medium. This approximation is asymptoti-
cally correct in the limit of infinite frequency or, correspond-
ingly, in the limit of infinite radial distance. A brief deriva-
tion of this expansion follows.

To satisfy conditions (4)-(11) exactly along T, i.e., on all
edges shared by finite and infinite elements, as exemplified
in Fig. 2, standard Nth order Lagrange interpolation is used
in the “azimuthal” direction, —1 < n <1, &= constant (the
mapping from the n—¢ plane to the x—y plane, x = x(n, &),
y =y(n, &) is given in [18]). In this way the enforcement of
continuity becomes trivial; the proper field components are
simply equated at each nodal point along I'. Any Cartesian
field component, i, is hence expanded according to

N
=Y E(&)H/(n)

1=0

(13)

where the z dependence ¢ /8% has been omitted for brevity.
In (13)
N
H(n)= X Ci,k”ﬂk (14)
k=0

is the Lagrange interpolation function associated with node
i, defined by H(n)=1 at node i and H,(n)=0 at nodes
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j#i, J=0, -+, N. The coefficients C, ; are tabulated in [18]
for N<4 but note that the node numbermg differs. The
factors H,(£) are as yet unknown functions that determine
the radial field behavior, which is to be governed locally (at
each node) by the transversal wavenumbers. For strictly
isotropic and homogeneous (2,, with transversal wavenum-
bers that are single valued and constant, respectively, a
single exponential term suffices in the expression for E (¢).
For problems with anisotropic and/or inhomogeneous (1,
multiple wavenumbers are required in the expansion at some
nodes (see below); therefore the following construction is
employed:

(15)

]e_k0W4/(E)S[§‘

E(§)=
Here W, , =W, ,/k, are normalized transversal wavenum-
bers to be deﬁned below (with W, , being the transversal
wavenumbers), , , are unknown constants to be determined,
ko=w/cy= w(eo,uo)l/z is the vacuum wavenumber, m, is
the number of exponential terms used at each node, 8=
B/ k, is the normalized propagation constant, and

) )
1 ag

m=—1+2t/N

The factors s,, which are independent of £, are necessary
because the length elements d¢ and d(y/x?+ y?) usually
differ.

The determination of Wl ., will now be explained. Bearing
in mind that (13) at each nodal point i consists of damped

plane waves e’*k.; 7 where

- k.,
k, j=—= ko jo(ﬁ)sg Bz

r=¢¢&+ zz.

(17)
Consistency requires that an expression e’* ok © with

k,=jW,(B)s,£— Bz

be used to calculate W, _» by solving (1) and (2) for a given B.

For an isotropic medium the transversal wavenumber is
well known to be W, ; = (B2 — kZn?)'/2, where n = (e, u,)!/?
is the refractive index, e, is the relative permittivity, and pu,
is the relative permeability. The single resulting normalized
transversal wavenumber thus becomes W, | =(B% — n?)/2,
from which m, =1 in (15). ’

For an anisotropic medium with tensor permittivity [e] and
scalar permeability w,, which is the most usual anisotropic
case, the resulting wavenumbers are found from Fresnel’s

equation [22],

|n%5, (18)

—nyR.— /“Lreu,u’l =0

where
(19)

should not be confused with the n in (4)-(11); n is the
generalized refractive index, §,,. is the Kronecker delta,
v,0'=1x, y, z, and ¢ is the angle from x to &£ As it turns
out, (18) becomes a polynomial equation in W,, whose solu-
tions yield the possible wavenumbers W, v J=1,m, <2
in (15).

n="k,= jW(B)s,(cos px +sin py) — Bz
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As the present analysis is restricted to lossless structures
above cutoff, all ¥, | have to be real. They also have to be
positive to guarantee the radial decay, because only positive
k, are accepted when solving the resulting eigenvalue prob-
lem, for which k constitutes the eigenvalue (see (33) below).

If ©, is inhomogeneous, which is the case for integrated
optical waveguides, individual wavenumbers have to be cal-
culated for each medium. Some infinite-element nodes (i =0
or N) will then reside on interfaces between two different
media with separate wavenumbers. The enforcement of
(4)-(11) that is required by the FEM along such an interface
seems impossible. However, by including wavenumbers re-
lated to both the media in the expansion on both sides of the
interface, this problem is avoided. A disadvantage is that m,
increases locally and the radial decay will not be asymptoti-
cally correct near the interface. The latter is, however, be-
lieved to be of negligible importance. A remedy is to insert
narrow “transition” elements on each side of the interfaces
in this category.

The infinite-element expansion as introduced thus far is
likely to yield accurate results at least for modes that are
sufficiently high above cutoff that the assumed exponential
behavior gives a good approximation of the correct field
behavior. A relevant quantity is k,Wa, where a is a charac-
teristic dimension of (),. The approximation may deteriorate
as koWa — 0 if the near-field behavior is not of the assumed
exponential form. For such a situation two measures are
suggested that will preserve the accuracy closer to cutoff:
a) an increase of a by moving T’ further away from the core
and b) the inclusion of one or more near-field wavenumbers
[18], which should be larger in magnitude than the asymp-
totic wavenumbers discussed above, thus permitting more
rapid variations to be modeled. In this work the second
measure was used with one near-ficld wavenumber for some
examples to maintain a high accuracy close to cutoff. This
subject is further discussed in the numerical examples.
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In keeping the notation in terms of shape function vectors,
we obtain for each infinite element the following expansion:

E,=Zy(NJ{E }e ™

E, = Z{N.}'{E,}e P

E, = jZo{ N {E }e ™

H, = {(NJT{H e

H,=(N}"{H,}e

H, = j(N)"(H_}e 7 (20)
where the component of the infinite-element shape function

vector, {N,}, associated with wavenumber W, ,, i=0,---, N,
j=1,-",m,is

Hl(n)e—koW,.J(E)X,f_ (21)

Here {E,}, {Ey}, {E.} {H,}, {Hy}, and {H,} have the same
meanings as in (12) but with a different dimension, namely
mg+my+ *++ + my on each infinite element.

E. The Generalized Eigenvalue Problem

By applying the standard Galerkin procedure to (3) with
the finite-clement expansion (12) and the infinite-element
expansion (20), and treating 8 as a parameter, there results
the following quadratic generalized eigenvalue problem:

[Po]+E[Q0]+kio([Ro]+[P1]+E[Q11+[R11)

1 —
+ p([P2]+B[Q2]+[Rz])){¢} ={0} (22)
0
where {®} is a column vector composed of all the unknowns
used to represent E and H throughout the entire waveguide
cross section. Here, 1/k, constitutes the eigenvalue. The
matrices with index zero are finite-element matrices (cf. [7]),
while the other matrices are infinite-clement matrices. The
square, sparse matrices [P,], [Q;], and [R,], i =0,1,2, are

Al enld] denldl  [0] [0} [0]
ny[Ai] eyy[At] jeyz[At] [0] [0] [O]
el —elal eldal 0] [0] [0]
[P1=X1 g (0] O wald]  wnlA] jualal] (23)
(0] [0] O wuld] sy lA] ju,l4]
o (0] 0 —gundA] —iunlA] peld] ]
ol o] 0] [ ~[4] [0]]
o [0 [0 [4] [0 [o]
o o 0 0 o
QI=X| (o [ © [© [0 [ 29
4l o [0 [ [0 [o]
[l [l [o] [0 [0 [0]]
[ [0]  [0] [0] [o] [0] -[c]]
o [ [ [ [0 [£]
o e el 181 [0
RI=XZ\ o1 1] [c] [0 [0 [o] (25)
o o -[8] [0 [o] o]
(¢l -[8] [ [ [ [0 |
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where ¥, denotes the matrix assembly procedure [21], in
which rows and columns corresponding to test and expansion
functions associated with variables in the unconnected sys-
tem are connected according to the interelement and bound-
ary conditions (4)—-(11). In (23)—(25), the nonvanishing matrix
elements are

Agl= [[{N}{N}" as (26)

T
Bol= [ () M s (27)
=/f{N} a{N} as (28)
[;11] [14 f]'{A&}{ﬁ%J ds (29)
(B, ff (N (30)
e = fy~{”“ (31)

where the integrations in (26)—(28) extend over a finite
element and in (29)—(31) over an infinite element. Explicit
expressions for the infinite-element matrices [ 4,], [ B,], and
[C,], i =1,2, which depend only on the infinite- element ge-
ometry and the transversal wavenumbers, are given in the
Appendix.

To linearize (22) as efficiently as possible we recognize
that {®} can be divided into vectors {® .-} and {® .}, of
which the former contains only variables related to nodal
points on I' and the latter contains the remaining, strictly
internal variables. As the infinite-element matrices operate
only on {® _ -}, the following new variables are introduced:

(@ r}=ko{®ey) (32)
which when used in (22) and after multiplication by k yields
(ko([Po]+ BLQo1) +[Ro1+ [P ]+ Bl O, 1+ [ R ]){®)

+([P,]+ B2, 1+ [ R, 1){® o} = {0}
ko{(i’ EF}_{q)GF} ={0}
(33)

which is the resulting linear generalized eigenvalue problem.
The dimension of (33) equals the dimension of {® .} plus
twice the dimension of {® _}. For large problems the for-
mer dimension is usually much larger than the latter. Corre-
spondingly, most of the unknowns will be related to nodal
points located strictly inside (2,.

By solving the sparse generalized eigenvalue problem (33)
with B as the known parameter, all field components for the
approximate fields of propagating eigenmodes are directly
determined and the corresponding eigenvalues k, are found.
From the knowledge of B and &, B is directly obtained. As
W has been assumed real and positive, only real and positive
values of kg are accepted, as discussed above.

III. NumeRricaL ExamMprLES

With the aim of evaluating the validity of the presented
method, a number of waveguide structures have been ana-
lyzed. Both optical waveguides and integrated optical wave-

Fig. 4. The mesh used for the circular dielectric waveguide comprising
four second-order triangles and four infinite elements.

guides, isotropic as well as anisotropic, have been consid-
ered. The solutions obtained have been compared with
solutions reported elsewhere or, if available, analytical solu-
tions. No spurious solutions [1]-[8] were observed during this
work.

The dense generalized eigenvalue NAG routine f02bjf [23]
was used to calculate the eigenvalues and eigenvectors of
(33). The computational load involved and the computer
storage are proportional to R> and R?, respectively, where
R is the total number of unknowns. As pointed out before
[7], [8], [16], [18], the use of a sparse [24] eigenvalue routine
would significantly reduce the required amounts of computer
time and memory, as the density of the matrices is of the
O(1/R) type; ie., the maximum number of nonzero ele-
ments on each row is independent of R.

A. The Circular Dielectric Waveguide

The first example consists of a circular dielectric wave-
guide of radius a, core refractive index n,=153, and
cladding refractive index n, = 1.50 [15], [18]. The fundamen-
tal HE | and higher order HE;; modes were calculated using
the mesh shown in Fig. 4, which comprises four second-order
triangles and four infinite elements (15 nodes). Only one
quarter of the waveguide was meshed with electric and
magnetic walls imposed on the two edges x =0 and y =0,
respectively.

The resulting dispersion diagram is plotted in Fig. 5,
where results of the presented method (squares) are com-
pared with analytical solutions (solid hnes) [25]. For the
mesh used, a near-ficld wavenumber W, = M_¥,, where 7,
is the asymptolic wavenumber discussed above, was included
for values of B below 1.515. For this and the other example
in this paper (subsection III-B) where a near-field term was
used, M, was set to 5. The value of B where the asymptotic
approximation starts to fail corresponds to koW,a =~ 1. The
result for the HE;; mode without the near-field term is
plotted for comparison in Fig. 5 (circles). The addition of a
near-field term did not influence the higher-order HEj,
mode as much as the fundamental mode.

The dimension of (33) for this example was 26 -+ 2% 48 = 122
without the near-field term and 26 +2 %248 = 218 with the
near-field term. The dispersion diagram indicates a corre-
spondence with the analytical solutions that is high, espe-
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Fig. 5. The obtained propagation characteristics for the circular di-
electyic waveguide using the mesh illustrated in Fig. 4.
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Fig. 6. The mesh used for the anisotropic dielectric rectangular wave-
guide comprising five second-order triangles and three infinite elements.

cially for the fundamental mode, considering the relatively
crude mesh. The maximum error in B8 was 0.07% for the
HE; mode and 0.08% for the HE;, mode.

To determine whether the asymptotic approximation is
effective or not, one may of course always include one or
more near-field terms. The calculated eigenvalues and eigen-
vectors will be weakly influenced by the incorporation of
such terms if the field behavior actually is of the assumed
exponential form.

B. The Anisotropic Rectangular Dielectric Waveguide

The second example consists of an anisotropic, rectangu-
lar, dieléctric waveguide of height ¢, width W =2¢, core
refractive indices n2 = n? =2.31, n2 =2.19, and cladding re-
fractive index n%=2.05 [4]. One quarter of the guide was
meshed using five second-order triangles and three infinite
elements (18 nodes), as illustrated in Fig. 6, to calculate the
E7, Ef), E5, and E3 modes by assuming mode-dependent
boundary conditions on the two edges x =0 and y =0 [26].
" The resulting dispersion relations are plotted in Fig. 7, in
which solid lines denote results using the present method
and solid squares denote the FEM results of [4]. Also for this
example a near-field wavenumber, W, = MW, was added

B[ —— Present analysis

Hayata et al [4]

225 |- -
220 ~
215 -

210 -

205

0

Fig. 7. The resulting dispersion diagram for the anisotropic dielectric
rectangular waveguide using the mesh shown in Fig, 6.

for values of 52<2.10 in order to obtain high accuracy
throughout the whole dispersion diagram. Again, the value
of B? at which the asymptotic approximation starts to fail
for the fundamental E}; mode corresponds to koW a = 1.

The dimension of (33) for the mesh shown in Fig. 6 was
44 +2%39 =122 without the near-field term and 44+
2+2%39 =200 with the near-field term. Hayata et al. [4]
analyzed the waveguide considered using a finite-clement
formulatjon in terms of the magnetic field and with artificial
boundary conditions for truncation of the exterior region.
The present results show a high correspondence with their
results as well as with the variational method [27].

C. The Anisotropic Slab Integrated Waveguide

This example consists of a one-dimensional, anisotropic,
asymmetric slab waveguide. It is a ¢ = 50 um thick slab with
refractive | indices n, =2.20001, n,=225002, and n,=
230004 on a substrate with indices n/ = 2.20000, nj =
2.25000, and »’, = 2.30000 and a surrounding refractive index
ng=1. A mesh comprising four fourth-order triangles and
two infinite elements (41 nodes), as shown in Fig. 8, was used
for comparison with exact solutions reported in [28]. For the
fundamental TE,; and TM; modes, perfect electric and mag-
netic walls, respectively, were assumed at the external edges
at x =0, A » 0. The number of unknowns was 168 +2*48 =
264 for the TM mode and 168+2x72 =312 for the TE
mode; the solution of (18) in the substrate yields one solution
for B < 2.25000 but two solutions for g > 2.25000.

Results for certain values of B8 are given in Table I where
A= k3(n?— B2). The correspondence with the analytical so-
lutions is excellent considering the extremely small change in
refractive indices between the slab and substrate and com-
pares well with the finite-element results [28], where a zero-
field condition was used at a large distance from the guide.
The required computation time for 312 unknowns is of order
10! minutes for each value of 8 on a 1 Mflop computer,
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Fig. 8. The mesh used for the one-dimensional anisotropic slab wave-
guide comprising four fourth-order triangles and two infinite elements.

TABLE 1
RESULTS FOR THE ANISOTROPIC ONE-DIMENSIONAL
SLAB WAVEGUIDE
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Fig. 10. The resulting propagation characteristics for the channel and
embossed waveguides using the mesh illustrated in Fig. 9.

2318 ———————

Mode B A (Exact) A % Error
TE, 2.200008 0.28653 0.28652 0.0034
n, =2.20001 2.200004 0.20302 0.20303 0.0035
™, 2.250016 0.27443 0.27447 0.0140
n, =225002 2250008 0.19462 0.19462 0.0015
y
q
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Fig. 9. The mesh used for the channel waveguide, the embossed
waveguide, and the anisotropic channel waveguide, comprising six sec-
ond-order triangles and three infinite elements.

— Present analysis

. Vandenbulcke ef al [28]

e
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Fig. 11. The resulting dispersion relation for the fundamental mode of
the anisotropic channel waveguide using the mesh shown in Fig. 9.

using the dense NAG routine. No near-field terms were
necessary for this example.

D. The Embedded and Embossed Integrated Waveguides

The next two examples consist of a rectangular channel
(embedded) waveguide and a rectangular embossed wave-
guide [15], [26]. Both waveguides are specified by the width
W =21, the thickness ¢, and the refractive indices n,, n,,
and n;. The channel waveguide has n, = 1.50, n, = 1.45, and
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n,y = 1.00, while the embossed waveguide has n, =1.50, n, =
1.00, and ny=1.45. The mesh shown in Fig. 9, which com-
prises six second-order triangles and three infinite elements
(19 nodes), was used for both guides to calculate the funda-
mental EY; mode by imposing a magnetic wall at the edge
x = 0. No near-field terms were used for this example.

The resulting dispersion relations are shown in Fig. 10,
where the present results (solid lines) are compared with the
finjte-element results [15] (dots and circles). Here, b = (8% —

2)/(n — nz) where n, and n, are the refractive indices of
the substrate and the core, respectlvely, and v —tko(n —

n2)!/2 /4. The correspondence with the finite-element re-
sults of [15] is very high. The dimension of (33) for these
problems was 63 +2%50 = 163.

E. The Anisotropic Channel Integrated Waveguide

The last example [26], [28] consists of an LiINbO,
anisotropic channel waveguide of width W = 5¢, thickness ¢,
core refractive indices ny, =2.222 and ny, = n,;, = 2.3129,
substrate refractive indices n,, =220 and n,, =n,, =2.29,
and surrounding refractive index n;=1. The same mesh
used for the isotropic channel and embossed waveguides
shown in Fig. 9 was used for this waveguide to calculate the
dispersion relation for the fundamental E{; mode by impos-
ing a magnetic wall at x = 0. No near-field terms were used
for this example.

The resulting diagram is plotted in Fig. 11, where the solid
line denotes results of the present analysis and the squares
denote’ the FEM results reported in [28]. The correspon-
dence between the two methods is very high. The size of (33)
for this example was 63 +2%81 = 225.

IV. CoNcLuUSIONS

A modified finite-element method for the propagation
analysis of dielectric waveguide structures has been pro-
posed. An asymptotically correct expansion on infinite ele-
ments in the exterior region that simultaneously for each
mode and frequency adapts the local rate of radial decay to
the transversal wavenumbers has been presented. Suggested
applications include both isotropic and anisotropic dielectric
waveguide structures with possibly inhomogeneous exterior
regions. The method is based on the full vectorial finite-
element formulation, which enforeces both the necessary tan-
gential conditions and the additional normal conditions. The
absence of spurious modes has hereby been conserved. By
using B /k, as a parameter for the generalized eigenvalue
problem, the linearity of the original FEM has been pre-
served. A number of numerical examples, including both
optical fibers and integrated optical waveguides, have been
analyzed and the correspondence with analytical results and
results reported elsewhere has been found to be excellent.
For some examples (aptical fibers) a near-field wavenumber
was added in order to obtain a high accuracy close to cutoff.

APPENDIX

The matrix elements in the infinite-element matrices in
(29)-(31) corresponding to a pair of unknowns associated
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with wavenumbers W, , and I—/I—/l , are given by
N 1_(_1)k+k’+1
A= C, ,Cpp| ———
ks k,kZ:O ¥ ’k[ k+k'+1
J
o (Al)
I/I/i,Js; + VI/”,],SZ'
1_(_1)k+k’+1
[Az]z,z’, g Z C k k|:“——,"—_
" k. k' = S k+k'+1
J
v = 2 (A2)
(I/Vl.lsl + VVi'.]’sz’)
N 1_(_1)k+k'+l
[Bl]t,t' = 2 Ci.kCt e
" k k' = ’ k+k'+1
_aﬂxﬁ/_;’ ]’Sz
A A3
I:I/VI7JSZ+I/VI',]’S1:I (A3)
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+ ==
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where the coefficients J, J,, aq,, ay,, @gy, a1y, Do, P1ys o,
and b, depend only on the infinite-element coordinates x,,
X35 X35 X45 Y15 Y25 V3 and v4 shown in Fig. 3 according to
the expressions given in [18]. For (A3)-(A6) to hold, the
infinite elements must be symmetrical with respect to n = 0.
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